Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(38): e202309443, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37523150

RESUMO

By supporting platinum (Pt) and cadmium sulfide (CdS) nanoparticles on indium oxide (In2 O3 ), we fabricated a CdS/Pt/In2 O3 photocatalyst. Selective photoreduction of carbon dioxide (CO2 ) to methane (CH4 ) was achieved on CdS/Pt/In2 O3 with electronic Pt-In2 O3 interactions, with CH4 selectivity reaching to 100 %, which is higher than that on CdS/Pt/In2 O3 without electronic Pt-In2 O3 interactions (71.7 %). Moreover, the enhancement effect of electronic Pt-(metal-oxide) interactions on selective photoreduction of CO2 to CH4 also occurs by using other common metal oxides, such as photocatalyst supports, including titanium oxide, gallium oxide, zinc oxide, and tungsten oxide. The electronic Pt-(metal-oxide) interactions separate photogenerated electron-hole pairs and convert CO2 into CO2 δ- , which can be easily hydrogenated into CH4 via a CO2 δ- →HCOO*→HCO*→CH*→CH4 path, thus boosting selective photoreduction of CO2 to CH4 . This offers a new way to achieve selective photoreduction of CO2 .

2.
Front Chem ; 10: 998812, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118309

RESUMO

Electrocatalytic glucose oxidation reaction (GOR) is the key to construct sophisticated devices for fast and accurately detecting trace glucose in blood and food. Herein, a noble-metal-free Cu/C-60 catalyst is fabricated by supporting Cu2O-CuO nanoparticles on carbon nanotubes through a novel discharge process. For GOR, Cu/C-60 shows a sensitivity as high as 532 µA mM-1 cm-2, a detection limit as low as 1 µM and a steady-state response time of only 5.5 s. Moreover, Cu/C-60 has outstanding stability and anti-interference ability to impurities. The synergistic effect of Cu2O-CuO could improve the adsorption and conversion of glucose, thus enhancing GOR performance. By using Cu/C-60, we fabricate a three-electrode chip. A portable and compact electrochemical system is constructed by connecting the three-electrode chip with Cu/C-60 to an integrated circuit board and a mobile phone for recording and displaying data. The portable and compact electrochemical system results in a GOR sensitivity of 501 µA mM-1 cm-2, which is close to the data measured on the bloated electrochemical workstation. The detection limit of the portable and compact electrochemical system in GOR is 50 µM. This is higher than those obtained on the bloated electrochemical workstation, but is much lower than the common blood glucose concentration of human body (>3 mM). This demonstrates the accuracy, reasonability and applicability of the portable and compact electrochemical system. The results of the present work are helpful for fabricating fast, efficient and portable devices for detecting trace amount of glucose in blood and food.

3.
ACS Appl Mater Interfaces ; 13(22): 26064-26073, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34038083

RESUMO

The electrocatalytic oxygen evolution reaction from H2O (OER) is essential in a number of areas like electrocatalytic hydrogen production from H2O. A Ni oxyhydroxide nanosheet (NiNS) is among the most widely studied OER catalysts but still suffers from low activity, sluggish kinetics, and poor stability. Herein, we incorporate MoO3 patches into NiNS to form a nanosheet with an intimate Ni-Mo interface (NiMoNS) for the OER. The overpotential at 10 mA cm-2 and Tafel slope on NiMoNS (260 mV, 54.7 mV dec-1) are lower than those on NiNS (296 mV, 89.3 mV dec-1), implying that higher activity and faster kinetics are achieved on NiMoNS. There is no change in electrocatalytic efficiency of NiMoNS after 18 h of OER, but the electrocatalytic efficiency of NiNS decreases by 56% after only 8 h of OER. Thus, NiMoNS has better stability. The intimate Ni-Mo interface promotes two-dimensional lateral growth of NiMoNS to form a surface area 1.5 times larger than that of NiNS, and facilitates electron transfer from Ni to Mo. This makes the Ni3+/Ni2+ ratio on the NiMoNS surface (1.32) higher than that on the NiNS surface (0.68). Moreover, the Ni3+/Ni2+ ratio on NiMoNS surface increases to 1.81 after 18 h of OER but the Ni3+/Ni2+ ratio on the NiNS surface decreases to 0.51 after 8 h of OER. Therefore, the NiMoNS surface has more abundant and stable Ni3+ sites which are catalytically active toward OER. This could be the reason for the enhanced activity, kinetics, and stability of NiMoNS. The results are very valuable for fabricating more efficient catalysts for electrocatalysis.

4.
ACS Appl Mater Interfaces ; 12(51): 56943-56953, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33307676

RESUMO

Electrocatalytic oxidation of water (i.e., oxygen evolution reaction, OER) plays crucial roles in energy, environment, and biomedicine. It is a key factor affecting the efficiencies of electrocatalytic reactions conducted in aqueous solution, e.g., electrocatalytic water splitting and glucose oxidation reaction (GOR). However, electrocatalytic OER still suffers from problems like high overpotential, sluggish kinetics, and over-reliance on expensive noble-metal-based catalysts. Herein, 15 nm thick carbon-based shell coated tungsten oxide (CTO) nanospheres are loaded on nickel foam to form CTO/NF. An enhanced electrocatalytic OER is triggered on CTO/NF, with the overpotential at 50 mA cm-2 (317 mV) and the Tafel slope (70 mV dec-1) on CTO/NF lower than those on pure tungsten oxide (360 mV, 117 mV dec-1) and noble-metal-based IrO2 catalysts (328 mV, 96 mV dec-1). A promoted electrocatalytic GOR is also achieved on CTO/NF, with efficiency as high as 189 µA mM-1 cm-2. The carbon-based shell on CTO is flexible for electron transfer between catalyst and reactants and provides catalytically active sites. This improves reactant adsorption and O-H bond dissociation on the catalyst, which are key steps in OER and GOR. The carbon-based shell on CTO retains the catalyst as nanospheres with a higher surface area, which facilitates OER and GOR. It is the multiple roles of the carbon-based shell that increases the electrocatalytic efficiency. These results are helpful for fabricating more efficient noble-metal-free electrocatalysts.

5.
ACS Appl Mater Interfaces ; 12(11): 12892-12900, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32108462

RESUMO

Graphene oxide (GO) nanosheets are promising noble-metal-free catalysts. However, the catalytic activity and selectivity of GO are still very low. Herein, GO is first functionalized via noncovalent interactions by an aspartic acid modified anhydride having COOH groups to form A-GO. A-GO is more conductive and hydrophilic than GO and P-GO synthesized via functionalizing GO by a COOH-free anhydride. Then, we load CdS nanoparticles, which are responsible for absorbing light to produce charge carriers, on A-GO to fabricate a CdS/A-GO photocatalyst without noble metals for the photoreduction of CO2 by H2O. CdS/A-GO exhibits a higher photoreduction efficiency than that of CdS/GO and CdS/P-GO. The main carbon-based photoreduction product of CdS/A-GO is CH3OH, whereas that of CdS/GO and CdS/P-GO is CO. The more conductive and hydrophilic A-GO triggers a more efficient electron transfer, CO2 adsorption, and production of hydrogen atoms from H2O dissociation, thus leading to the higher photoreduction efficiency and product change on CdS/A-GO. Besides, the COOH groups of the aspartic acid modified anhydride supply their hydrogen atoms to promote the conversion from CO2 to CH3OH on CdS/A-GO. Therefore, noncovalently functionalizing GO with different active species can efficiently improve the catalytic performance of GO. This opens a new way to design and construct noble-metal-free catalysts with enhanced activity and selectivity.

6.
J Am Chem Soc ; 140(40): 13071-13077, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30222934

RESUMO

A selective CO evolution from photoreduction of CO2 in water was achieved on a noble-metal-free, carbide-based composite catalyst, as demonstrated by a CO selectivity of 98.3% among all carbon-containing products and a CO evolution rate of 29.2 µmol h-1, showing superiority to noble-metal-based catalyst. A rapid separation of the photogenerated electron-hole pairs and improved CO2 adsorption on the surface of the carbide component are responsible for the excellent performance of the catalyst. The high CO selectivity is accompanied by a predominant H2 evolution, which is believed to provide a proton-deficient environment around the catalyst to favor the formation of hydrogen-deficient carbon products. The present work provides general insights into the design of a catalyst with a high product selectivity and also the carbon evolution chemistry during a photocatalytic reaction.

7.
J Am Chem Soc ; 139(11): 4123-4129, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28215081

RESUMO

Indium-oxide (In2O3) nanobelts coated by a 5-nm-thick carbon layer provide an enhanced photocatalytic reduction of CO2 to CO and CH4, yielding CO and CH4 evolution rates of 126.6 and 27.9 µmol h-1, respectively, with water as reductant and Pt as co-catalyst. The carbon coat promotes the absorption of visible light, improves the separation of photoinduced electron-hole pairs, increases the chemisorption of CO2, makes more protons from water splitting participate in CO2 reduction, and thereby facilitates the photocatalytic reduction of CO2 to CO and CH4.

8.
ACS Nano ; 9(11): 11258-65, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26473307

RESUMO

Inspired by natural photosynthesis, biomaterial-based catalysts are being confirmed to be excellent for visible-light-driven photocatalysis, but are far less well explored. Herein, an ultrathin and uniform biofilm fabricated from cold-plasma-assisted peptide self-assembly was employed to support Eosin Y (EY) and Pt nanoparticles to form an EY/Pt/Film catalyst for photocatalytic water splitting to H2 and photocatalytic CO2 reduction with water to CO, under irradiation of visible light. The H2 evolution rate on EY/Pt/Film is 62.1 µmol h(-1), which is about 5 times higher than that on Pt/EY and 1.5 times higher than that on the EY/Pt/TiO2 catalyst. EY/Pt/Film exhibits an enhanced CO evolution rate (19.4 µmol h(-1)), as compared with Pt/EY (2.8 µmol h(-1)) and EY/Pt/TiO2 (6.1 µmol h(-1)). The outstanding activity of EY/Pt/Film results from the unique flexibility of the biofilm for an efficient transfer of the photoinduced electrons. The present work is helpful for designing efficient biomaterial-based catalysts for visible-light-driven photocatalysis and for imitating natural photosynthesis.


Assuntos
Peptídeos beta-Amiloides/química , Biofilmes , Elétrons , Luz , Catálise/efeitos da radiação , Análise Espectral , Água/química
9.
Oncotarget ; 6(30): 29599-613, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26336826

RESUMO

Chromatin is a highly organized and dynamic structure in eukaryotic cells. The change of chromatin structure is essential in many cellular processes, such as gene transcription, DNA damage repair and others. Anti-silencing function 1 (ASF1) is a histone chaperone that participates in chromatin higher-order organization and is required for appropriate chromatin assembly. In this study, we identified the E2 ubiquitin-conjugating enzyme RAD6 as an evolutionary conserved interacting protein of ASF1 in D. melanogaster and H. sapiens that promotes the turnover of ASF1A by cooperating with a well-known E3 ligase, MDM2, via ubiquitin-proteasome pathway in H. sapiens. Further functional analyses indicated that the interplay between RAD6 and ASF1A associates with tumorigenesis. Together, these data suggest that the RAD6-MDM2 ubiquitin ligase machinery is critical for the degradation of chromatin-related proteins.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Western Blotting , Proteínas de Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células Hep G2 , Histonas/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Microscopia Confocal , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitinação
10.
PLoS One ; 10(7): e0133444, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26177367

RESUMO

Histone H2B monoubiquitination is a key histone modification that has significant effects on chromatin higher-order structure and gene transcription. Multiple biological processes have been suggested to be tightly related to the dynamics of H2B monoubiquitination. However, a comprehensive understanding of biological roles of H2B monoubiquitination is still poorly understood. In the present study, we developed an efficient tool to disrupt endogenous H2B monoubiquitination levels by using an H2BK120R mutant construct expressed in human cells. Genome-wide microarray analysis of these cells revealed a potential global view of biological functions of H2B monoubiquitination. Bioinformatics analysis of our data demonstrated that while H2B monoubiquitination expectedly affected a number of previously reported biological pathways, we also uncovered the influence of this histone modification on many novel biological processes. Therefore, our work provided valuable information for understanding the role of H2B monoubiquitination and indicated potential directions for its further studies.


Assuntos
Histonas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Ubiquitinação , Animais , Diferenciação Celular/genética , Cromatina/metabolismo , Dano ao DNA/genética , Reparo do DNA/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Histonas/genética , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Proteínas Mutantes/metabolismo , Mutação/genética , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...